Rubber surfacing is often used in playgrounds due to its potential injury prevention benefits and as a way to recycle waste tires. Available research on chemicals in recycled rubber has focused on synthetic turf applications, but is limited for playground rubber surfacing. Potential lead contamination from vulcanizing agents used in rubber surfacing are a possible concern; however this has not been researched. We examined levels of lead in poured-in-place rubber and compared them to levels in soil, sand, and wood mulch materials from 28 randomly selected playgrounds in Boston, MA, USA using X-ray fluorescence. To evaluate the association between material type and lead concentrations, we conducted a two-way ANOVA with repeated measures and built a linear regression model controlling for distance to major roadway, neighborhood-level status as an environmental justice area, peeling paint on the playground, and rubber condition. Average lead levels were 65.7 μg/g for soil, 22.0 μg/g for rubber, 8.5 μg/g for sand, and 9.0 μg/g for mulch. Our finding of lower concentrations of lead in sand and mulch compared to rubber and soil should be used to inform playground design to optimize children's health, alongside other chemical and safety considerations.