Biomechanically driven intraoperative spine registration during navigated anterior vertebral body tethering

Phys Med Biol. 2019 May 23;64(11):115008. doi: 10.1088/1361-6560/ab1bfa.

Abstract

The integration of pre-operative biomechanical planning with intra-operative imaging for navigated corrective spine surgery may improve surgical outcomes, as well as the accuracy and safety of manoeuvres such as pedicle screw insertion and cable tethering, as these steps are performed empirically by the surgeon. However, registration of finite element models (FEMs) of the spine remains challenging due to changes in patient positioning and imaging modalities. The purpose of this study was to develop and validate a new method registering a preoperatively constructed patient-specific FEM aimed to plan and assist anterior vertebral body tethering (AVBT) of scoliotic patients, to intraoperative cone beam computed tomography (CBCT) during navigated AVBT procedures. Prior to surgery, the 3D reconstruction of the patient's spine was obtained using biplanar radiographs, from which a patient-specific FEM was derived. The surgical plan was generated by first simulating the standing to intraoperative decubitus position change, followed by the AVBT correction techniques. Intraoperatively, a CBCT was acquired and an automatic segmentation method generated the 3D model for a series of vertebrae. Following a rigid initialization, a multi-level registration simulation using the FEM and the targeted positions of the corresponding reconstructed vertebrae from the CBCT allows for the refinement of the alignment between modalities. The method was tested with 18 scoliotic cases with a mean thoracic Cobb angle of 47° ± 7° having already undergone AVBT. The translation error of the registered FEM vertebrae to the segmented CBCT spine was 1.4 ± 1.2 mm, while the residual orientation error was 2.7° ± 2.6°, 2.8° ± 2.4° and 2.5° ± 2.8° in the coronal, sagittal, and axial planes, respectively. The average surface-to-surface distance was 1.5 ± 1.2 mm. The proposed method is a first attempt to use a patient-specific biomechanical FEM for navigated AVBT, allowing to optimize surgical strategies and screw placement during surgery.

MeSH terms

  • Biomechanical Phenomena
  • Child
  • Cohort Studies
  • Cone-Beam Computed Tomography / methods*
  • Humans
  • Image Processing, Computer-Assisted / methods*
  • Intraoperative Care*
  • Orthopedic Procedures / methods*
  • Patient Positioning*
  • Spine / diagnostic imaging
  • Spine / surgery*
  • Thoracic Vertebrae / diagnostic imaging
  • Thoracic Vertebrae / surgery*