Natural arsenic with a unique order structure: potential for new quantum materials

Sci Rep. 2019 Apr 18;9(1):6275. doi: 10.1038/s41598-019-42561-8.

Abstract

Study of arsenic (As) provides guidelines for the development of next-generation materials. We clarify the unique structure of the third crystalline polymorph of natural As (Pnm21-As) by crystallographical experiment and the electronic structure by first-principles computational method. The crystal structure of Pnm21-As is a novel structure in which the basic portions of semi-metalic grey-As and semi-conductor black-As are alternately arranged at the atomic level. For both covalent and van der Waals bonding, the contributions of sd and pd hybridizations are important. Van der Waals bonding characteristics and d orbital contributions can be varied by control of layer stacking. Total charges are clearly divided into positive and negative in the same elements for the grey-As and black-As portions, respectively, is of importance. The sequence in which one-dimensional electron donor and acceptor portions alternate in the layer will be the first description.