Osteoarthritis (OA) is a leading cause of global disability that affects more than half of the population over 65. It is not a single disease but a progressive, inflammatory- and immune-altering multi-disease that affects the whole joint. OA has many risk factors including age, obesity, gender, lifestyle, joint morphology, metabolic dysfunction and genetic disposition. A major stumbling block in treating clinical OA has been the inability to detect its early onset and disease progression. This gap in understanding may arise from our failure to recognize that the OA patient exhibits a vulnerability to dysregulation of central feedback circuits that control sympathetic tone, inflammation, circadian rhythms (central and peripheral clocks), gut microbiome, metabolic redox and whole joint pathology. Early detection of OA and slowing its progression may come from discoveries outside the joint targeting these potentially modifiable upstream targets. We argue that future treatments may benefit from moving from a knee-centric viewpoint to a more systems-based, whole-body approach. The challenge, however, will be to better characterize these key circuits and apply this knowledge to develop new therapies and interventions.
Keywords: CNS; Circadian rhythm; Inflammation; Microbiome; Osteoarthritis; Sympathetic.
Copyright © 2019 Elsevier Inc. All rights reserved.