Glioblastoma (GBM) is an incurable primary brain tumor that is highly resistant to current treatments. Glioma stem-like cells (GSCs) are an aggressive population of glioma cells that not only initiate malignant growth, but also promote therapeutic resistance. Thus, targeting GSCs is critical for improving GBM treatment and ensuring complete eradication of the tumor. Here, we show that NT5DC2 (5'-Nucleotidase Domain Containing 2), a functionally unknown protein, plays a crucial role in GSC tumor initiation via upregulating Fyn expression. NT5DC2 is preferentially expressed in GSCs relative to the non-stem tumor cells. Knockdown of NT5DC2 significantly inhibits the GSC tumorsphere formation and cell viability in vitro, and tumorigenesis in vivo, thus, prolonging animal survival. Moreover, disruption of NT5DC2 in GSCs markedly reduces the expression of Fyn, a Src family proto-oncogene that has been implicated in the regulation of GBM progression. Importantly, the expression of NT5DC2 strongly correlated with increased aggression of human gliomas, but not that of other brain tumors. Taken together, our results uncover the function of NT5DC2 in GSC maintenance and highlight NT5DC2 as a promising therapeutic target for GBM.
Keywords: Fyn; Glioblastoma; Glioma Stem-like Cell; NT5DC2; Tumorigenesis.
Copyright © 2019 Elsevier B.V. All rights reserved.