It is a great challenge to develop semicrystalline polyimides exhibited significant recrystallization ability and fast crystallization kinetics from the melt. A series of semicrystalline polyimides based on 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA) and different diamines, including 1,3-bis(4-aminophenoxy)benzene (TPER), 1,4-bis(4-aminophenoxy)benzene (TPEQ), 4,4'-oxydianiline (4,4'-ODA) and 4,4'-bis(4-aminophenoxy)biphenyl (BAPB), end capped with phthalic anhydride were synthesized. Crystallization and melting behaviors were investigated by differential scanning calorimetry (DSC). The polyimide derived from HQDPA/TPER (PI-1) exhibited a glass transition temperature (Tg) at 190 °C and double melting temperatures (Tms) at 331 °C and 350 °C, and the polyimide derived from HQDPA/TPEQ (PI-2) displayed a Tg at 214 °C and a Tm at 388 °C. PI-1 and PI-2 showed significant recrystallization ability from melt and high crystallization rate by isothermal crystallization kinetics study, while polyimides based on 4,4'-ODA and BAPB lost crystallizability once taken to the melt. These polyimides also exhibited excellent thermo-oxidative stability with 5% weight loss temperature higher than 500 °C and good mechanical properties with tensile moduli of 2.0⁻3.3 GPa, tensile strengths of 85⁻105 MPa and elongations at break of 5⁻18%. PI-1 also possessed outstanding melt flowability with less than 300 Pa·s around 370 °C by rheological measurements.
Keywords: crystallization kinetics; melt-processable; semicrystalline polyimide; thermal stability.