By fusing the extracellular domain of the natural killer (NK) cell receptor NKG2D to DAP12, we constructed a chimeric antigen receptor (CAR) to improve NK cell tumor responses. An RNA electroporation approach that provides transient expression of the CAR was adopted as a risk mitigation strategy. Expression of the NKG2D RNA CAR significantly augmented the cytolytic activity of NK cells against several solid tumor cell lines in vitro and provided a clear therapeutic benefit to mice with established solid tumors. Three patients with metastatic colorectal cancer were then treated with local infusion of the CAR-NK cells. Reduction of ascites generation and a marked decrease in number of tumor cells in ascites samples were observed in the first two patients treated with intraperitoneal infusion of low doses of the CAR-NK cells. The third patient with metastatic tumor sites in the liver was treated with ultrasound-guided percutaneous injection, followed by intraperitoneal infusion of the CAR-NK cells. Rapid tumor regression in the liver region was observed with Doppler ultrasound imaging and complete metabolic response in the treated liver lesions was confirmed by positron emission tomography (PET)- computed tomographic (CT) scanning. Our results highlight a promising therapeutic potential of using RNA CAR-modified NK cells to treat metastatic colorectal cancer.
Keywords: NKG2D ligands; chimeric antigen receptor; colorectal cancer; immunotherapy; natural killer cell.
Copyright © 2019 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.