A type of graft copolymer based on polysiloxane and regioregular poly(3-hexylthiophene) (P3HT) has been synthesised and its properties have been studied alongside those of its parent conjugated polymer-regioregular P3HT. Electrochemical analysis has revealed more significant changes in conformation of the copolymer film than was observed for P3HT. UV-Vis-NIR spectroelectrochemical investigation provided evidence of improved doping reversibility of the copolymer, despite its marginally increased band gap, as also confirmed by electroconductometric analysis. Evidence has been shown, indicating that polaron mobilities in both P3HT and the copolymer are higher than those of bipolaronic charge carriers, even though both systems exhibit standard doping/dedoping patterns. The grafted copolymer was tested in bulk heterojunction solar cells. Preliminary studies show a great potential of these polymers for application in photovoltaics. Power conversion efficiency of up to 2.46% was achieved despite the dilution of the P3HT chains in the copolymer.
Keywords: functionalized conducting polymers; graft copolymers; molecular dilution; poly(3-hexylthiophene).