A simple and novel route is developed for fabricating BP-based composite materials to improve the thermo-stability, flame retardant performances, and mechanical performances of polymers. Black phosphorene (BP) has outstanding flame retardant properties, however, it causes the mechanical degradation of waterborne polyurethane (WPU). In order to solve this problem, the graphene is introduced to fabricate the black phosphorene/graphene (BP/G) composite material by high-pressure nano-homogenizer machine (HNHM). The structure, thermo-stability, flame retardant properties, and mechanical performance of composites are analyzed by a series of tests. The structure characterization results show that the BP/G composite material can distribute uniformly into the WPU. The addition of BP/G significantly improves the residues of WPU in both of TG analysis (5.64%) and cone calorimeter (CC) test (12.50%), which indicate that the BP/G can effectively restrict the degradation of WPU under high temperature. The CC test indicates that BP/G/WPU has a lower peak release rate (PHRR) and total heat release (THR), which decrease by 48.18% and 38.63%, respectively, than that of the pure WPU, respectively. The mechanical analysis presents that the Young's modulus of the BP/G/WPU has an increase of seven times more than that of the BP/WPU, which indicates that the introduce of graphene can effectively improve the mechanical properties of BP/WPU.
Keywords: black phosphorene; flame retardant; graphene; mechanical performance; waterborne polyurethane.