Background: High quality data are needed for decision-making at all levels of the public health system, from guiding public health activities at the local level, to informing national policy development, to monitoring the impact of global initiatives. Although a number of approaches have been developed to evaluate the underlying quality of routinely collected vaccination administrative data, there remains a lack of consensus around how data quality is best defined or measured.
Discussion: We present a definitional framework that is intended to disentangle many of the elements that have confused discussions of vaccination data quality to date. The framework describes immunization data in terms of three key characteristics: data quality, data usability, and data utilization. The framework also offers concrete suggestions for a specific set of indicators that could be used to better understand immunization those key characteristics, including Trueness, Concurrence, Relevancy, Efficiency, Completeness, Timeliness, Integrity, Consistency, and Utilization.
Conclusion: Being deliberate about the choice of indicators; being clear on their definitions, limitations, and methods of measurement; and describing how those indicators work together to give a more comprehensive and practical understanding of immunization data quality, usability, and use, should yield more informed, and therefore better, programmatic decision-making.
Keywords: Data quality; Data use; Immunization information; Immunization program; Low and middle-income countries.