The alpha 7 nicotinic acetylcholine receptor, α7 nAChR, plays a central role in regulating inflammatory responses. Previous studies showed that pharmacological inhibitors of α7nAChR have a pro-inflammatory effect, increasing the circulating levels of cytokines such as tumor necrosis factor alpha (TNFα). This study focused on how genetic polymorphisms of the partially duplicated α7nAChR gene (CHRFAM7A), which is highly expressed in peripheral blood cells, contribute to functional outcome after spinal cord injury (SCI). In a cohort of 27 SCI patients and 25 emergency room consented controls (% F/M: 15/85, 24/76; mean ± SE age: 35 ± 1.38 and 35 ± 2.0 respectively), a panel of circulating cytokines, noradrenergic metabolite (normetanephrine [NMN]) levels, and clinical data were available within the first 7 days post-injury (DPI) up to 90 DPI, and were investigated in the acute/subacute (DPI 1-21) and intermediate (DPI 22-90) temporal periods. Cytokine and NMN plasma levels on different DPI were analyzed as a function of CHRFAM7A genotype. TNFα levels, as a representative of some elevated inflammatory mediators, were nearly threefold higher in individuals carrying the del-2bp variant of the CHRFAM7A gene compared with that in the no-deletion genotype (p = 0.001 analysis of variance [ANOVA]) 3 weeks DPI, and twofold higher than genotype-matched acute/subacute non-SCI injury controls within 7 days DPI. In contrast, NMN levels were initially unchanged, although after 3 weeks, NMN levels were significantly decreased in SCI individuals carrying the del-2bp variant compared with non-carriers (p = 0.011 ANOVA). Numerical pain scores over this same period post-injury were significantly elevated in SCI patients carrying the del-2bp variant relative to non-carriers (p = 0.001 ANOVA). Taken together, these data reveal that pro-inflammatory responses associated with CHRFAM7A gene variation may also be associated with differences in pain experience in patients following SCI, at least during the intermediate phase.
Keywords: CHRFAM7A gene; SCI; cytokine; inflammation; pain.