Systemic lupus erythematosus (SLE) is mediated by a chronic and dysregulated inflammatory response. Interleukin (IL)-17, a proinflammatory cytokine, and T helper (Th)17 cells are associated with chronic autoimmune diseases. We hypothesized that inhibition of IL-17 would decrease the numbers of T cell subsets that function as B-cell helpers, as well as B-cell differentiation into plasma cells and autoantibody expression. The IL-17 level was increased markedly in Roquinsan/san mice. Loss of IL-17 in Roquinsan/san mice improved nephritis by downregulating immunoglobulin (Ig)G, IgG1, and IgG2a production. Formation of germinal centers (GCs), and follicular B- and T-cell differentiation was reduced, whereas the number of regulatory T (Treg) cells and immature B cells was increased, by IL-17 deficiency in Roquinsan/san mice. These results suggest that IL-17 inhibition can ameliorate SLE by inhibiting B-cell differentiation into GCs. Therefore, IL-17-producing Th17 cells show promise as a target for development of novel therapeutics for SLE.