Preservation of Acyl Coenzyme A Attenuates Pathological and Metabolic Cardiac Remodeling Through Selective Lipid Trafficking

Circulation. 2019 Jun 11;139(24):2765-2777. doi: 10.1161/CIRCULATIONAHA.119.039610. Epub 2019 Mar 26.

Abstract

Background: Metabolic remodeling in heart failure contributes to dysfunctional lipid trafficking and lipotoxicity. Acyl coenzyme A synthetase-1 (ACSL1) facilitates long-chain fatty acid (LCFA) uptake and activation with coenzyme A (CoA), mediating the fate of LCFA. The authors tested whether cardiac ACSL1 overexpression aids LCFA oxidation and reduces lipotoxicity under pathological stress of transverse aortic constriction (TAC).

Methods: Mice with cardiac restricted ACSL1 overexpression (MHC-ACSL1) underwent TAC or sham surgery followed by serial in vivo echocardiography for 14 weeks. At the decompensated stage of hypertrophy, isolated hearts were perfused with 13C LCFA during dynamic-mode 13C nuclear magnetic resonance followed by in vitro nuclear magnetic resonance and mass spectrometry analysis to assess intramyocardial lipid trafficking. In parallel, acyl CoA was measured in tissue obtained from heart failure patients pre- and postleft ventricular device implantation plus matched controls.

Results: TAC-induced cardiac hypertrophy and dysfunction was mitigated in MHC-ACSL1 hearts compared with nontransgenic hearts. At 14 weeks, TAC increased heart weight to tibia length by 46% in nontransgenic mice, but only 26% in MHC-ACSL1 mice, whereas ACSL1 mice retained greater ejection fraction (ACSL1 TAC: 65.8±7.5%; nontransgenic TAC: 45.9±7.3) and improvement in diastolic E/E'. Functional improvements were mediated by ACSL1 changes to cardiac LCFA trafficking. ACSL1 accelerated LCFA uptake, preventing C16 acyl CoA loss post-TAC. Long-chain acyl CoA was similarly reduced in human failing myocardium and restored to control levels by mechanical unloading. ACSL1 trafficked LCFA into ceramides without normalizing the reduced triglyceride storage in TAC. ACSL1 prevented de novo synthesis of cardiotoxic C16- and C24-, and C24:1 ceramides and increased potentially cardioprotective C20- and C22-ceramides post-TAC. ACLS1 overexpression activated AMP activated protein kinase at baseline, but during TAC, prevented the reduced LCFA oxidation in hypertrophic hearts and normalized energy state (phosphocreatine:ATP) and consequently, AMP activated protein kinase activation.

Conclusions: This is the first demonstration of reduced acyl CoA in failing hearts of humans and mice, and suggests possible mechanisms for maintaining mitochondrial oxidative energy metabolism by restoring long-chain acyl CoA through ASCL1 activation and mechanical unloading. By mitigating cardiac lipotoxicity, via redirected LCFA trafficking to ceramides, and restoring acyl CoA, ACSL1 delayed progressive cardiac remodeling and failure.

Keywords: acyl coenzyme A; ceramides; coenzyme A ligases; fatty acids; heart failure.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • AMP-Activated Protein Kinases / metabolism
  • Acyl Coenzyme A / metabolism*
  • Aged
  • Animals
  • Biological Transport
  • Ceramides / metabolism
  • Coenzyme A Ligases / genetics
  • Coenzyme A Ligases / metabolism
  • Disease Models, Animal
  • Energy Metabolism*
  • Fatty Acids / metabolism
  • Female
  • Heart Failure / genetics
  • Heart Failure / metabolism*
  • Heart Failure / pathology
  • Heart Failure / physiopathology
  • Humans
  • Hypertrophy, Left Ventricular / genetics
  • Hypertrophy, Left Ventricular / metabolism*
  • Hypertrophy, Left Ventricular / pathology
  • Hypertrophy, Left Ventricular / physiopathology
  • Lipid Metabolism*
  • Male
  • Mice, Transgenic
  • Middle Aged
  • Myocardium / metabolism*
  • Myocardium / pathology
  • Oxidation-Reduction
  • Triglycerides / metabolism
  • Ventricular Dysfunction, Left / genetics
  • Ventricular Dysfunction, Left / metabolism*
  • Ventricular Dysfunction, Left / pathology
  • Ventricular Dysfunction, Left / physiopathology
  • Ventricular Function, Left*
  • Ventricular Remodeling*

Substances

  • Acyl Coenzyme A
  • Ceramides
  • Fatty Acids
  • Triglycerides
  • AMP-Activated Protein Kinases
  • ACSL1 protein, mouse
  • Coenzyme A Ligases
  • ACSL1 protein, human