Inflammation is associated with production of reactive oxygen species (ROS) and results in the induction of thioredoxin (TXN) and peroxiredoxins (PRDXs) and activation of nuclear factor-like 2 (Nrf2). In this study we have used the mouse RAW 264.7 macrophage and the human THP-1 monocyte cell line to investigate the pattern of expression of three Nrf2 target genes, PRDX1, TXN reductase (TXNRD1) and heme oxygenase (HMOX1), by activation of different Toll-like receptors (TLRs). We found that, while the TLR4 agonist lipopolysaccharide (LPS) induces all three genes, the pattern of induction with agonists for TLR1/2, TLR3, TLR2/6 and TLR7/8 differs depending on the gene and the cell line. In all cases, the extent of induction was HMOX1>TXNRD1>PRDX1. Since LPS was a good inducer of all genes in both cell lines, we studied the mechanisms mediating LPS induction of the three genes using mouse RAW 264.7 cells. To assess the role of ROS we used the antioxidant N-acetylcysteine (NAC). Only LPS induction of HMOX1 was inhibited by NAC while that of TXNRD1 and PRDX1 was unaffected. These three genes were also induced by phorbol myristate acetate (PMA), a ROS-inducer acting by activation of protein kinase C (PKC). The protein kinase inhibitor staurosporine inhibited the induction of all three genes by PMA but only that of HMOX1 by LPS. This indicates that activation of these genes by inflammatory agents is regulated by different mechanisms involving either ROS or protein kinases, or both.
Keywords: Antioxidant; Inflammation; Nrf2; Peroxiredoxin; Thioredoxin; Toll-like receptors.
Copyright © 2019 Elsevier Inc. All rights reserved.