The goal of this study is to synthesize, characterize and investigate some physicochemical properties of conductive polyaniline-g-polystyrene/Fe3O4 (Fe3O4/PSt-g-PANi) nanocomposites. For this purpose, initially, Fe3O4 nanoparticles were synthesized by a co-precipitation method. Then, the desired nanocomposite was synthesized in two steps. First, the atom transfer radical polymerization (ATRP) of styrene was performed using an ATRP initiator attached to the surface of Fe3O4 nanoparticles, followed by functionalization of the Fe3O4-PSt with amine groups (-NH2). Second, surface oxidative graft copolymerization of aniline was accomplished using the -NH2 moieties on the Fe3O4/PSt-NH2 as the anchoring sites. The prepared materials were characterized by various instruments, including TEM, SEM, TGA, EDX, FT-IR, XRD and conductivity measurements. The results indicated that the synthesized conductive polymer/Fe3O4 nanocomposites had higher electrical conductivity and thermal resistance than those of the corresponding homopolymers.
Keywords: FeO nanoparticles; Graft copolymer; atom transfer radical polymerization; nanocomposite.