Strain engineering of core-shell silicon carbide nanowires for mechanical and piezoresistive characterizations

Nanotechnology. 2019 Jun 28;30(26):265702. doi: 10.1088/1361-6528/ab0d5d. Epub 2019 Mar 6.

Abstract

This study evaluated the mechanical properties and piezoresistivity of core-shell silicon carbide nanowires (C/S-SiCNWs) synthesized by a vapor-liquid-solid technique, which are a promising material for harsh environmental micro electromechanical systems (MEMS) applications. The C/S-SiCNWs were composed of a crystalline cubic (3C) SiC core wrapped by an amorphous silicon dioxide (SiO x ) shell; however, TEM observations of the NWs showed that hexagonal polytypes (2H, 4H , and 6H) were partially induced in the core by a stacking fault owing to a Shockley partial dislocation. The stress-strain relationship of the C/S-SiCNWs and SiC cores without an SiO x shell was examined using MEMS-based nanotensile tests. The tensile strengths of the C/S-SiCNWs and SiC cores were 7.0 GPa and 22.4 GPa on average, respectively. The lower strength of the C/S-SiCNWs could be attributed to the SiO x shell with the surface roughness as the breaking point. The Young's modulus of the C/S-SiCNWs was 247.2 GPa on average, whereas that of the SiC cores had a large value with scatter data ranging from 450 to 580 GPa. The geometrical model of the SiC core based on the transmission electron microscopy observations rationalized this scatter data by the volume content of the stacking fault in the core. The piezoresistive effects of the C/S-SiCNW and SiC core were also evaluated from the I-V characteristics under uniaxial tensile strain. The gauge factor of -30.7 at 0.008 ε for the C/S-SiCNW was approximately two-times larger than that of -15.8 at 0.01 ε for the SiC core. This could be caused by an increase of the surface state density at the SiO x /SiC interface owing to the positive fixed oxide charge of the SiO x shell.