Piezo-driven sample rotation system with ultra-low electron temperature

Rev Sci Instrum. 2019 Feb;90(2):023905. doi: 10.1063/1.5083994.

Abstract

Piezo-driven rotator is convenient for tilted magnetic field experiments due to its precise angle control. However, the rotator itself and the sample mounted on it are difficult to be cooled down because of extra heat leaks and presumably bad thermal contacts from the piezo. Here, we report a piezo-driven sample rotation system designed for ultra-low temperature environment. The sample, as well as the rotating sample holder, can be cooled to as low as 25 mK by customized thermal links and thermal contacts. More importantly, the electron temperature in the electrical transport measurements can also be cooled down to 25 mK with the help of home-made filters. To demonstrate the application of our rotation system at ultra-low electron temperature, a measurement revealing tilt-induced localization and delocalization in the second Landau level of two-dimensional electron gas is provided.