Background: Attenuating post-injury neuroendocrine stress abrogates persistent injury-associated anemia. Our objective was to examine the mechanisms by which propranolol and clonidine modulate this process. We hypothesized that propranolol and clonidine would decrease bone marrow expression of high-mobility group box-1 (HMGB1) and increase expression of stem cell factor (SCF) and B-cell lymphoma-extra large (Bcl-xL).
Methods: Male Sprague-Dawley rats were allocated to naïve control, lung contusion followed by hemorrhagic shock (LCHS), or LCHS plus daily chronic restraint stress (LCHS/CS) ±propranolol, ±clonidine. Day seven bone marrow expression of HMGB1, SCF, and Bcl-xL was assessed by polymerase chain reaction.
Results: Following LCHS, HMGB1 was decreased by propranolol (49% decrease, p = 0.012) and clonidine (54% decrease, p < 0.010). SCF was decreased following LCHS/CS, and was increased by propranolol (629% increase, p < 0.001) and clonidine (468% increase, p < 0.001). Bcl-xL was decreased following LCHS/CS, and was increased by propranolol (59% increase, p = 0.006) and clonidine (77% increase, p < 0.001).
Conclusions: Following severe trauma, propranolol and clonidine abrogate persistent injury-associated anemia by modulating bone marrow cytokines, favoring effective erythropoiesis.
Keywords: Bone marrow; Erythropoiesis; Injury; Stress; Trauma.
Copyright © 2019 Elsevier Inc. All rights reserved.