Motivation: The 3D genome architecture influences the regulation of genes by facilitating chromatin interactions between distal cis-regulatory elements and gene promoters. We implement Cross Cell-type Correlation based on DNA accessibility (C3D), a customizable computational tool that predicts chromatin interactions using an unsupervised algorithm that utilizes correlations in chromatin measurements, such as DNaseI hypersensitivity signals.
Results: C3D accurately predicts 32.7%, 18.3% and 24.1% of interactions, validated by ChIA-PET assays, between promoters and distal regions that overlie DNaseI hypersensitive sites in K562, MCF-7 and GM12878 cells, respectively.
Availability and implementation: Source code is open-source and freely available on GitHub (https://github.com/LupienLabOrganization/C3D) under the GNU GPLv3 license. C3D is implemented in Bash and R; it runs on any platform with Bash (≥4.0), R (≥3.1.1) and BEDTools (≥2.19.0). It requires the following R packages: GenomicRanges, Sushi, data.table, preprocessCore and dynamicTreeCut.
Supplementary information: Supplementary data are available at Bioinformatics online.
© The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.