Diabetic kidney disease (DKD) is a complex and multifactorial disorder associated with deregulations in a large number of different biological pathways on the molecular level. Using the 2 established biomarkers, estimated glomerular filtration rate (eGFR) and albuminuria will not allow allocating patients to tailored therapy. Molecular multimarker panels as sensors for the deregulation of the various disease mechanisms combined with a better understanding of how investigational as well as approved drugs interfere with these disease processes forms the basis for platform trials in DKD. In these platform trials, patients with DKD are assigned to the most suitable treatment arm based on their molecular marker profile. Close monitoring of biomarkers after treatment initiation together with assessment of renal function and "off-target" effects will allow identification of therapy responders, with nonresponders shifted to the next-best treatment arm based on their molecular profile. In this viewpoint article, we summarize evidence on the variation of DKD disease progression as well as the response to therapy and outline procedures to model disease pathophysiology supporting biomarker panel construction. Finally, the use of biomarkers in clinical trial setup is discussed.
Keywords: biomarker panel; clinical trial design; diabetic kidney disease; pathophysiology; predictive marker.