Geodetic Observations of Weak Determinism in Rupture Evolution of Large Earthquakes

J Geophys Res Solid Earth. 2018 Nov;123(11):9950-9962. doi: 10.1029/2018JB015962. Epub 2018 Nov 27.

Abstract

The moment evolution of large earthquakes is a subject of fundamental interest to both basic and applied seismology. Specifically, an open problem is when in the rupture process a large earthquake exhibits features dissimilar from those of a lesser magnitude event. The answer to this question is of importance for rapid, reliable estimation of earthquake magnitude, a major priority of earthquake and tsunami early warning systems. Much effort has been made to test whether earthquakes are deterministic, meaning that observations in the first few seconds of rupture can be used to predict the final rupture extent. However, results have been inconclusive, especially for large earthquakes greater than M w 7. Traditional seismic methods struggle to rapidly distinguish the size of large-magnitude events, in particular near the source, even after rupture completion, making them insufficient to resolve the question of predictive rupture behavior. Displacements derived from Global Navigation Satellite System data can accurately estimate magnitude in real time, even for the largest earthquakes. We employ a combination of seismic and geodetic (Global Navigation Satellite System) data to investigate early rupture metrics, to determine whether observational data support deterministic rupture behavior. We find that while the earliest metrics (~5 s of data) are not enough to infer final earthquake magnitude, accurate estimates are possible within the first tens of seconds, prior to rupture completion, suggesting a weak determinism. We discuss the implications for earthquake source physics and rupture evolution and address recommendations for earthquake and tsunami early warning.

Keywords: GNSS; determinism; earthquake magnitude.