Applying the Taguchi Method to the Optimization of Anticancer Activity of Bacterial Alginate-CuO Bionanocomposite

Open Access Maced J Med Sci. 2018 Dec 20;7(1):1-5. doi: 10.3889/oamjms.2019.006. eCollection 2019 Jan 15.

Abstract

Aim: In recent decades, despite various types of cancer inflicting many people worldwide, the existing therapies are not satisfactory and have many side effects. The present study was conducted to optimise the synthesis of novel alginate-CuO nanocomposite with utmost anticancer activity.

Methods: In this study, 9 nanocomposites were designed using Taguchi method and three factors including copper oxide nanoparticles, alginate biopolymer and stirring times were assessed at three different levels. The anticancer activity of the synthesised nanocomposites was evaluated on the MCF-7 cell line using the MTT method. Using the Qulitek-4 software, we determined the optimum conditions for the synthesis of alginate-CuO nanocomposite with the highest anticancer activity.

Results: The results indicated that all three factors (copper oxide, alginate and stirring time) were effective on the anticancer activity of the alginate-CuO nanocomposite. Also, the nanocomposite produced under the conditions of experiment 9 (8 mg/ml of copper oxide, 2 mg/ml of alginate and 60 min of stirring time) provided the highest growth inhibition rate as 75.63% against cancer cells.

Conclusion: The synthesised alginate-copper oxide nanocomposites in this study showed a significant anticancer effect. Therefore, the synthesised nanocomposite under optimal conditions can be used in the design of new anticancer drugs.

Keywords: Alginate; Anticancer; CuO nanoparticles; Nanocomposite; Taguchi method.