Downregulation of LncRNA TUG1 Inhibited TLR4 Signaling Pathway-Mediated Inflammatory Damage After Spinal Cord Ischemia Reperfusion in Rats via Suppressing TRIL Expression

J Neuropathol Exp Neurol. 2019 Mar 1;78(3):268-282. doi: 10.1093/jnen/nly126.

Abstract

Toll-like receptor 4 (TLR4) and TLR4 interactor with leucine-rich repeats (TRIL) play a crucial role in the inflammatory response. This study investigated the role of long noncoding RNA taurine-upregulated gene 1 (lncRNA TUG1) in TRIL/TLR4 signaling in spinal cord ischemia reperfusion (IR) injury. IR injury was induced in experimental rats; knockdown of TUG1 and TRIL was induced by intrathecal injection of siRNAs and overexpression of TRIL was induced by pcDNA3.3-TRIL. The results showed that the mRNA levels of TUG1 were increased at 12 hours after IR; this was accompanied by increased expression of the TRIL- and TLR4-mediated NF-κB/IL-1β signaling pathway. Activated microglia, detected with increased ionized calcium-binding adapter molecule 1 as a marker, exacerbated the hind-limb neurological impairment and blood-spinal cord barrier (BSCB) leakage after IR. TUG1 knockdown inhibited expression of TRIL and TLR4 signaling proinflammatory cytokines and microglial activation, and attenuated neurological deficit and BSCB leakage. TRIL knockdown inhibited the TLR4-mediated inflammatory response, while TRIL expression reversed the inhibited inflammatory effect caused by TUG1 knockdown. These data suggest that TUG1 knockdown inhibited inflammatory damage of the TLR4-mediated NF-κB/IL-1β signaling pathway after IR via suppressing TRIL expression.

Keywords: TUG1; Blood-spinal cord barrier; Microglia; Neuroinflammation; Spinal cord ischemia reperfusion injury; TLR4; TRIL.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Down-Regulation / physiology*
  • Gene Expression
  • Inflammation / genetics
  • Inflammation / metabolism
  • Inflammation Mediators / antagonists & inhibitors
  • Inflammation Mediators / metabolism*
  • Intercellular Signaling Peptides and Proteins / biosynthesis*
  • Intercellular Signaling Peptides and Proteins / genetics
  • Male
  • Membrane Proteins / antagonists & inhibitors
  • Membrane Proteins / biosynthesis*
  • Membrane Proteins / genetics
  • RNA, Long Noncoding / genetics
  • RNA, Long Noncoding / metabolism*
  • Rats
  • Rats, Sprague-Dawley
  • Spinal Cord Ischemia / genetics
  • Spinal Cord Ischemia / metabolism*
  • Toll-Like Receptor 4 / antagonists & inhibitors
  • Toll-Like Receptor 4 / genetics
  • Toll-Like Receptor 4 / metabolism*

Substances

  • Inflammation Mediators
  • Intercellular Signaling Peptides and Proteins
  • Membrane Proteins
  • RNA, Long Noncoding
  • TRIL protein, human
  • TUG1 long noncoding RNA, rat
  • Tlr4 protein, rat
  • Toll-Like Receptor 4