In this study, we developed a novel Fe3O4 nanoparticles-doxorubicin (DOX)-Hyaluronic acid (HA) nanoparticles on the basis of firstly discovered "formed porous structure" in spontaneously assembled Fe3O4 nanoparticles. The Mechanism of Action (MOA) behind this porous DOX-loading cargo was tested and confirmed. A multi-functional Fe3O4-DOX+HA nanoparticle was further constructed by incorporating HA into our system. In vitro and in vivo studies exhibited that Fe3O4-DOX+HA owned enhanced antitumor efficacy with significantly prolonged survival time due to the combination of M1 polarization ability of Fe3O4 nanoparticles, tumor killing effect of DOX and tumor and TAM-targeting effect of HA. All in all, our studies offer a novel strategy to develop a multifunctional antitumor system with a simple preparation method and an enhanced therapeutic outcome.
Keywords: M(1) polarization; Porous structure; Spontaneous assembled Fe(3)O(4) nanoparticles; Tumor and TAM targeting.
Copyright © 2019 Elsevier B.V. All rights reserved.