The comprehensive performance of carbon anodes for Na-ion batteries (NIBs) is largely restricted by their inferior rate capability and safety issues. Herein, a slope-dominated carbon anode is achieved at a low temperature of 800 °C, which delivers a high reversible capacity of 263 mA h g-1 at 0.15C with an impressive initial Coulombic efficiency (ICE) of 80 %. When paired with the NaNi1/3 Fe1/3 Mn1/3 O2 cathode, the reversible capacity at 6C is still 75 % of that at 0.15C, and 73 % of the capacity is retained after 1000 cycles at 3C. The enhanced Na storage performance could be attributed to the unique microstructure with randomly oriented short carbon layers and the relatively higher defect concentration. Given its robustness, such a low-temperature carbonization strategy could also be applicable to other precursors and provide a new opportunity to design slope-dominated carbon anodes for high safety, low-cost NIBs with excellent ICE and superior rate capability.
Keywords: Na-ion batteries; carbon anode; high safety; rate capability; slope-dominated.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.