VICKZ1 enhances tumor progression and metastasis in lung adenocarcinomas in mice

Oncogene. 2019 May;38(21):4169-4181. doi: 10.1038/s41388-019-0715-8. Epub 2019 Jan 30.

Abstract

The VICKZ (Igf2bp) family of RNA binding proteins regulate RNA function at many levels, including intracellular RNA localization, RNA stability, and translational control. One or more of the three VICKZ paralogs are upregulated in many different types of cancers. Here, we show how VICKZ1 enhances, and dominant negative VICKZ1 inhibits, cell migration, growth in soft agar, and wound healing in a mouse lung adenocarcinoma cell line containing a constitutively active, mutant Kras. Similarly, modulation of VICKZ1 activity promotes or inhibits metastases upon implantation of these cells into syngeneic mice. To test these effects in a genetic model system, we generated a mouse with an inducible VICKZ1 transgene and found that isolated overexpression of VICKZ1 in the lungs had no noticeable effect on morphology. Although directed overexpression of mutant Kras in the lungs led to the formation of small adenomas, concurrent overexpression of VICKZ1 remarkably accelerated tumor growth and formation of pulmonary adenocarcinomas. VICKZ1-containing ribonucleoprotein complexes are highly enriched in Kras mRNA in lung adenocarcinoma cells, and Kras signaling is enhanced in these cells by overexpression of VICKZ1. Analysis of lung carcinoma patients reveals that elevated VICKZ1 expression correlates with lower overall survival; this reduction is dramatically enhanced in those patients bearing a mutant Kras gene. Our study reveals that RNA binding proteins of the VICKZ family can synergize with Kras to influence signaling and oncogenic activity.

Keywords: Igf2bp1; RNA binding protein; cell migration; transgenic mouse; tumor progression.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma of Lung / genetics*
  • Adenocarcinoma of Lung / pathology*
  • Animals
  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation / genetics
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / pathology
  • Mice
  • Mice, Transgenic
  • Mutation / genetics
  • Neoplasm Metastasis / genetics*
  • Neoplasm Metastasis / pathology
  • Proto-Oncogene Proteins p21(ras) / genetics
  • RNA-Binding Proteins / genetics*
  • Signal Transduction / genetics

Substances

  • RNA-Binding Proteins
  • Proto-Oncogene Proteins p21(ras)