Background: Major depressive disorder (MDD) is one of the most well-known psychiatric disorders, which can be destructive for its damage to people's normal cognitive, emotional and social functions. Personality refers to the unique and stable character of thinking and behavior style of an individual, which has long been thought as a key influence factor for MDD. Although some knowledge about the common neural basic between MDD and personality traits has been acquired, there are few studies exploring dynamic neural mechanism behind them, which changes brain connectivity pattern rapidly to adapt to the environment over time.
Methods: In this study, the emerging dynamic functional network connectivity (DFNC) method was used in resting-state fMRI data to find the differences between healthy group (N = 107) and MDD group (N = 109) in state-based dynamic measures, and the correlations between these measures and personality traits (extraversion and neuroticism in Eysenck Personality Questionnaire, EPQ) were explored.
Results: The results showed that MDD was significantly less than the health control group in dwell time and fraction time of state 4, which was positively correlated with extraversion score and negatively correlated with neuroticism score. Further exploration on state 4 showed that it had low modularity, hyper-connectedness of sensory-related regions and DMN, and weak connections between cortex and subcortical areas, which suggested that the absence of this state in MDD might represent a decrease in activity and positive emotions.
Conclusion: We found the dynamic functional connectivity mechanism underlying MDD, confirmed our hypothesis that there existed the interacted relationship between trait, disease and the brain's dynamic characteristic, and suggested some reference for treatment of depression.
Keywords: DFNC; EPQ; FC state; Major depression disorder; Personality trait.
Copyright © 2018. Published by Elsevier B.V.