Topotactic Conversion of Alkali-Treated Intergrown Germanosilicate CIT-13 into Single-Crystalline ECNU-21 Zeolite as Shape-Selective Catalyst for Ethylene Oxide Hydration

Chemistry. 2019 Mar 21;25(17):4520-4529. doi: 10.1002/chem.201900173. Epub 2019 Feb 25.

Abstract

The conversion of the alkali-treated intergrowth germanosilicate CIT-13 into the single-crystalline high-silica ECNU-21 (named after East China Normal University) zeolite, with a novel topology and a highly crystalline zeolite framework, has been realized through a creative top-down strategy involving a mild alkaline-induced multistep process consisting of structural degradation and reconstruction. Instead of acid treatment, hydrolysis in aqueous ammonia solution not only readily cleaved the chemically weak Ge(Si)-O-Ge bonds located within the interlayer double four ring (D4R) units of CIT-13, but also cleaved the metastable Si-O-Si bonds therein. This led to extensive removal of the D4R units, and also generated silanol groups on adjacent silica-rich layers, which then condensed to form a novel daughter structure upon calcination. Individual oxygen bridges in the reassembled ECNU-21 replaced the germanium-rich D4R units in CIT-13, thereby eliminating the original intergrowth phenomenon along the b axis. With an ordered crystalline structure of 10-ring (R) channels as well as suitable germanium-related Lewis acid sites, ECNU-21 serves as a stable solid Lewis acid catalyst for the shape-selective hydration of ethylene oxide (EO) to ethylene glycol (EG) at greatly reduced H2 O/EO ratios and reaction temperature in comparison with the noncatalytic industrial process.

Keywords: germanosilicates; heterogeneous catalysis; hydration; topotactic conversion; zeolites.