Diabetes occurs when pancreatic β-cell death exceeds β-cell growth, which leads to loss of β-cell mass. An effective therapy must have two actions: promotion of β-cell replication and suppression of β-cell death. Previous studies have established an important role for γ-aminobutyric acid (GABA) in islet-cell hormone homeostasis, as well as the maintenance of the β-cell mass. GABA exerts paracrine actions on α cells in suppressing glucagon secretion, and it has autocrine actions on β cells that increase insulin secretion. Multiple studies have shown that GABA increases the mitotic rate of β cells. In mice, following β-cell depletion with streptozotocin, GABA therapy can restore the β-cell mass. Enhanced β-cell replication appears to depend on growth and survival pathways involving Akt activation. Some studies have also suggested that it induces transdifferentiation of α cells into β cells, but this has been disputed and requires further investigation. In addition to proliferative effects, GABA protects β cells against injury and markedly reduces their apoptosis under a variety of conditions. The antiapoptotic effects depend at least in part on the enhancement of sirtuin-1 and Klotho activity, which both inhibit activation of the NF-κB inflammatory pathway. Importantly, in xenotransplanted human islets, GABA therapy stimulates β-cell replication and insulin secretion. Thus, the intraislet GABAergic system is a target for the amelioration of diabetes therapy, including β-cell survival and regeneration. GABA (or GABAergic drugs) can be combined with other antidiabetic drugs for greater effect.
Keywords: GABA; GLP-1; apoptosis; diabetes; insulin; regeneration; β-cell.
© 2019 Wiley Periodicals, Inc.