Clonal hematopoiesis is a common, age-related process in which a somatically mutated hematopoietic precursor gives rise to a genetically distinct subpopulation in the blood. This phenomenon has been observed in populations across the globe and, while virtually non-existent in children is estimated to affect >10% of the 70-and-older age group. The mutations are thought to occur in stem cells, which makes them pre-cancerous, and precursors to cancer stem cells. Many of the genes most commonly mutated in clonal hematopoiesis are also recurrently mutated in leukemia, genes such as DNMT3A, TET2, ASXL1, JAK2, and TP53. However, between 40% and 60% of cases arise from the accumulation of what appear to be random mutations outside of known driver genes. Clonal hematopoiesis is frequently present in otherwise healthy individuals and may persist for many years. Though largely asymptomatic, carrying these somatic mutations confers a small but significantly increased risk of leukemic transformation, affecting 0.5-1% carriers per year; although most genes confer an increased risk of transformation, mutations in TP53 and U2AF1 appear to carry a particularly high risk for transformation. Additionally, a patient's history of prior treatment with cytotoxic chemotherapy and/or radiation are correlated with the development of clonal hematopoiesis; in the setting of chemotherapy treatment of solid tumors, hematopoietic mutations in TP53 and PPM1D appear to contribute to outgrowth of clones that may lead to subsequent malignancy. The presence of a clone also imparts a significantly increased risk of cardiovascular disease, which in some cases appears to be due to increased inflammation and atherosclerosis. Clonal hematopoiesis is correlated with several other diseases as well, including diabetes, chronic pulmonary disease, and aplastic anemia, with other associations probably yet to be uncovered.
Keywords: AML; CHIP; Clonal hematopoiesis; HSC; MDS; Somatic mutation.
© 2019 Elsevier Inc. All rights reserved.