In the mammalian stomach, the isthmus has been considered as a stem cell zone. However, various locations and proliferative activities of gastric stem cells have been reported. We focused here on the stem cell marker Bmi1, a polycomb group protein, aiming to elucidate the characteristics of Bmi1-expressing cells in the stomach and to examine their stem cell potential. We investigated the Bmi1-expressing cell lineage in Bmi1-CreERT; Rosa26-YFP, LacZ or Rosa26-Confetti mice. We examined the in vivo and ex vivo effects of Bmi1-expressing cell ablation by using Bmi1-CreERT; Rosa26-iDTR mice. The Bmi1 lineage was also traced during regeneration after high-dose tamoxifen-, irradiation- and acetic acid-induced mucosal injuries. In the lineage-tracing experiments using low-dose tamoxifen, Bmi1-expressing cells in the isthmus of the gastric antrum and corpus provided progeny bidirectionally, towards both the luminal and basal sides over 6 months. In gastric organoids, Bmi1-expressing cells also provided progeny. Ablation of Bmi1-expressing cells resulted in impaired gastric epithelium in both mouse stomach and organoids. After high-dose tamoxifen-induced gastric mucosal injury, Bmi1-expressing cell lineages expanded and fully occupied all gastric glands of the antrum and the corpus within 7 days after tamoxifen injection. After irradiation- and acetic acid-induced gastric mucosal injuries, Bmi1-expressing cells also contributed to regeneration. In conclusion, Bmi1 is a gastric stem cell marker expressed in the isthmus of the antrum and corpus. Bmi1-expressing cells have stem cell potentials, both under physiological conditions and during regeneration after gastric mucosal injuries. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Keywords: gastric ulcer; homeostasis; radiation injury; regeneration.
Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.