Quantification of structural brain connectivity via a conductance model

Neuroimage. 2019 Apr 1:189:485-496. doi: 10.1016/j.neuroimage.2019.01.033. Epub 2019 Jan 21.

Abstract

Connectomics has proved promising in quantifying and understanding the effects of development, aging and an array of diseases on the brain. In this work, we propose a new structural connectivity measure from diffusion MRI that allows us to incorporate direct brain connections, as well as indirect ones that would not be otherwise accounted for by standard techniques and that may be key for the better understanding of function from structure. From our experiments on the Human Connectome Project dataset, we find that our measure of structural connectivity better correlates with functional connectivity than streamline tractography does, meaning that it provides new structural information related to function. Through additional experiments on the ADNI-2 dataset, we demonstrate the ability of this new measure to better discriminate different stages of Alzheimer's disease. Our findings suggest that this measure is useful in the study of the normal brain structure, and for quantifying the effects of disease on the brain structure.

Keywords: Alzheimer's disease; Brain connectivity; Conductance; Diffusion MRI; Resting-state functional MRI.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / diagnostic imaging
  • Brain / anatomy & histology*
  • Brain / diagnostic imaging*
  • Brain / physiology
  • Connectome / methods*
  • Datasets as Topic
  • Diffusion Magnetic Resonance Imaging / methods*
  • Diffusion Tensor Imaging / methods
  • Humans
  • Models, Theoretical*