Near-Infrared Annihilation of Conductive Filaments in Quasiplane MoSe2 /Bi2 Se3 Nanosheets for Mimicking Heterosynaptic Plasticity

Small. 2019 Feb;15(7):e1805431. doi: 10.1002/smll.201805431. Epub 2019 Jan 17.

Abstract

It is desirable to imitate synaptic functionality to break through the memory wall in traditional von Neumann architecture. Modulating heterosynaptic plasticity between pre- and postneurons by another modulatory interneuron ensures the computing system to display more complicated functions. Optoelectronic devices facilitate the inspiration for high-performance artificial heterosynaptic systems. Nevertheless, the utilization of near-infrared (NIR) irradiation to act as a modulatory terminal for heterosynaptic plasticity emulation has not yet been realized. Here, an NIR resistive random access memory (RRAM) is reported, based on quasiplane MoSe2 /Bi2 Se3 heterostructure in which the anomalous NIR threshold switching and NIR reset operation are realized. Furthermore, it is shown that such an NIR irradiation can be employed as a modulatory terminal to emulate heterosynaptic plasticity. The reconfigurable 2D image recognition is also demonstrated by an RRAM crossbar array. NIR annihilation effect in quasiplane MoSe2 /Bi2 Se3 nanosheets may open a path toward optical-modulated in-memory computing and artificial retinal prostheses.

Keywords: 2D materials; charge trapping; heterostructures; near-infrared annihilation; quasiplane nanosheets.

Publication types

  • Research Support, Non-U.S. Gov't