Purpose of review: Lipoprotein lipase (LpL) is well known for its lipolytic action in blood lipoprotein triglyceride catabolism. This article summarizes the recent mechanistic and molecular studies on elucidating the 'unconventional' roles of LpL in mediating biological events related to immune cell response and lipid transport in the pathogenesis of cardiovascular disease (CVD) and tissue degenerative disorders.
Recent findings: Several approaches to inactivate the inhibitors that block LpL enzymatic activity have reestablished the importance of systemic LpL activity in reducing CVD risk. On the other hand, increasing evidence suggests that focal arterial expression of LpL relates to aortic macrophage levels and inflammatory processes. In the hematopoietic origin, LpL also plays a role in modulating hematopoietic stem cell proliferation and circulating blood cell levels and phenotypes. Finally, building upon the strong genetic evidence on the association with assorted brain disorders, a new era in exploring the mechanistic insights into the functions and activity of LpL in brain that impacts central nerve systems has begun.
Summary: A better understanding of the molecular action of LpL will help to devise novel strategies for intervention of a number of diseases, including blood cell or metabolic disorders, as well to inhibit pathways related to CVD and tissue degenerative processes.