Structural and functional characterization of thermostable biocatalysts for the synthesis of 6-aminopurine nucleoside-5'-monophospate analogues

Bioresour Technol. 2019 Mar:276:244-252. doi: 10.1016/j.biortech.2018.12.120. Epub 2019 Jan 3.

Abstract

The present work describes the functional and structural characterization of adenine phosphoribosyltransferase 2 from Thermus thermophilus HB8 (TtAPRT2). The combination of structural and substrate specificity data provided valuable information for immobilization studies. Dimeric TtAPRT2 was immobilized onto glutaraldehyde-activated MagReSyn®Amine magnetic iron oxide porous microparticles by two different strategies: a) an enzyme immobilization at pH 8.5 to encourage the immobilization process by N-termini (MTtAPRT2A, MTtAPRT2B, MTtAPRT2C) or b) an enzyme immobilization at pH 10.0 to encourage the immobilization process through surface exposed lysine residues (MTtAPRT2D, MTtAPRT2E, MTtAPRT2F). According to catalyst load experiments, MTtAPRT2B (activity: 480 IU g-1biocatalyst, activity recovery: 52%) and MTtAPRT2F (activity: 507 IU g-1biocatalyst, activity recovery: 44%) were chosen as optimal derivatives. The biochemical characterization studies demonstrated that immobilization process improved the thermostability of TtAPRT2. Moreover, the potential reusability of MTtAPRT2B and MTtAPRT2F was also tested. Finally, MTtAPRT2F was employed in the synthesis of nucleoside-5'-monophosphate analogues.

Keywords: Biocatalysis; Enzyme Immobilization; Protein crystallography; Thermophiles.

MeSH terms

  • Biocatalysis*
  • Enzyme Stability
  • Ferric Compounds
  • Glutaral / chemistry
  • Hydrogen-Ion Concentration
  • Magnetics
  • Magnetite Nanoparticles
  • Nucleosides / biosynthesis*
  • Nucleosides / chemistry
  • Polymers
  • Substrate Specificity

Substances

  • Ferric Compounds
  • Magnetite Nanoparticles
  • Nucleosides
  • Polymers
  • ferric oxide
  • Glutaral