Design, Synthesis, and Biological Evaluation of New 1-(Aryl-1 H-pyrrolyl)(phenyl)methyl-1 H-imidazole Derivatives as Antiprotozoal Agents

J Med Chem. 2019 Feb 14;62(3):1330-1347. doi: 10.1021/acs.jmedchem.8b01464. Epub 2019 Jan 23.

Abstract

We have designed and synthesized a series of new imidazole-based compounds structurally related to an antiprotozoal agent with nanomolar activity which we identified recently. The new analogues possess micromolar activities against Trypanosoma brucei rhodesiense and Leishmania donovani and nanomolar potency against Plasmodium falciparum. Most of the analogues displayed IC50 within the low nanomolar range against Trypanosoma cruzi, with very high selectivity toward the parasite. Discussion of structure-activity relationships and in vitro biological data for the new compounds are provided against a number of different protozoa. The mechanism of action for the most potent derivatives (5i, 6a-c, and 8b) was assessed by a target-based assay using recombinant T. cruzi CYP51. Bioavailability and efficacy of selected hits were assessed in a T. cruzi mouse model, where 6a and 6b reduced parasitemia in animals >99% following intraperitoneal administration of 25 mg/kg/day dose for 4 consecutive days.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antiprotozoal Agents / chemical synthesis
  • Antiprotozoal Agents / chemistry*
  • Antiprotozoal Agents / pharmacology*
  • Cytochrome P-450 Enzyme Inhibitors / pharmacology
  • Drug Design*
  • Drug Evaluation, Preclinical*
  • Humans
  • Imidazoles / chemical synthesis
  • Imidazoles / chemistry*
  • Imidazoles / pharmacology*
  • Parasitic Sensitivity Tests
  • Trypanosoma / drug effects*

Substances

  • Antiprotozoal Agents
  • Cytochrome P-450 Enzyme Inhibitors
  • Imidazoles