Background: Presently, hormonal therapy targeting estrogen receptors is the most effective treatment available for luminal breast cancer. However, many patients relapse after the therapy. It has been suggested that cancer stem-like cells are involved with hormonal therapy resistance; in the present study, we evaluated this hypothesis.
Methods: In the present study, we used our previously established hormonal therapy-resistant cell lines, including aromatase inhibitor (AI)-resistant cells (Type 1 and Type 2) and fulvestrant-resistant cells (MFR).
Results: AI-resistant cell lines expressing ER (Type 1 V1 and V2) showed high cancer stemness in terms of their CD44/CD24 expression and side populations, which were stimulated by the addition of estrogen and inhibited by fulvestrant. However, ALDH activity was lower than in the ER-negative resistant cells, suggesting that the stemness of luminal cells is distinct from that of basal-like breast cancer cells. The migration and invasion activity of the ER-positive Type 1 V1 and V2 cells were higher than in the ER-negative cell lines, Type 2 and MFR.
Conclusions: Fractionation of parental cells based on CD44/CD24 expression and colony formation assay indicated that CD44+/CD24+ cells might be the origin of hormonal therapy-resistant cells. This population reconstituted various other subpopulations under estrogen deprivation. These results indicate that hormonal therapy resistance is closely related to the cancer stem cell-like properties of luminal breast cancer.
Keywords: Breast cancer; Cancer stem-like cells; Estrogen receptor; Hormonal therapy resistance.