Ovarian Tumor Cell Expression of Claudin-4 Reduces Apoptotic Response to Paclitaxel

Mol Cancer Res. 2019 Mar;17(3):741-750. doi: 10.1158/1541-7786.MCR-18-0451. Epub 2019 Jan 3.

Abstract

A significant factor contributing to poor survival rates for patients with ovarian cancer is the insensitivity of tumors to standard-of-care chemotherapy. In this study, we investigated the effect of claudin-4 expression on ovarian tumor cell apoptotic response to cisplatin and paclitaxel. We manipulated claudin-4 gene expression by silencing expression [short hairpin RNA (shRNA)] in cells with endogenously expressed claudin-4 or overexpressing claudin-4 in cells that natively do not express claudin-4. In addition, we inhibited claudin-4 activity with a claudin mimic peptide (CMP). We monitored apoptotic response by caspase-3 and Annexin V binding. We examined proliferation rate by counting the cell number over time as well as measuring the number of mitotic cells. Proximity ligation assays, immunoprecipitation (IP), and immunofluorescence were performed to examine interactions of claudin-4. Western blot analysis of tubulin in cell fractions was used to determine the changes in tubulin polymerization with changes in claudin-4 expression. Results show that claudin-4 expression reduced epithelial ovarian cancer (EOC) cell apoptotic response to paclitaxel. EOCs without claudin-4 proliferated more slowly with enhanced mitotic arrest compared with the cells expressing claudin-4. Furthermore, our results indicate that claudin-4 interacts with tubulin, having a profound effect on the structure and polymerization of the microtubule network. In conclusion, we demonstrate that claudin-4 reduces the ovarian tumor cell response to microtubule-targeting paclitaxel and disrupting claudin-4 with CMP can restore apoptotic response. IMPLICATIONS: These results suggest that claudin-4 expression may provide a biomarker for paclitaxel response and can be a target for new therapeutic strategies to improve response.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents, Phytogenic / pharmacology
  • Antineoplastic Agents, Phytogenic / therapeutic use*
  • Apoptosis
  • Cell Culture Techniques
  • Cell Line, Tumor
  • Cell Proliferation
  • Claudin-4 / metabolism*
  • Female
  • Humans
  • Paclitaxel / pharmacology
  • Paclitaxel / therapeutic use*

Substances

  • Antineoplastic Agents, Phytogenic
  • Claudin-4
  • Paclitaxel