A methylated-DNA-binding complex required for plant development mediates transcriptional activation of promoter methylated genes

J Integr Plant Biol. 2019 Feb;61(2):120-139. doi: 10.1111/jipb.12767.

Abstract

Although the mechanism of DNA methylation-mediated gene silencing is extensively studied, relatively little is known about how promoter methylated genes are protected from transcriptional silencing. SUVH1, an Arabidopsis Su(var)3-9 homolog, was previously shown to be required for the expression of a few promoter methylated genes. By chromatin immunoprecipitation combined with sequencing, we demonstrate that SUVH1 binds to methylated genomic loci targeted by RNA-directed DNA methylation. SUVH1 and its homolog SUVH3 function partially redundantly and interact with three DNAJ domain-containing homologs, SDJ1, SDJ2, and SDJ3, thus forming a complex which we named SUVH-SDJ. The SUVH-SDJ complex components are co-localized in a large number of methylated promoters and are required for the expression of a subset of promoter methylated genes. We demonstrate that the SUVH-SDJ complex components have transcriptional activation activity. SUVH1 and SUVH3 function synergistically with SDJ1, SDJ2, and SDJ3 and are required for plant viability. This study reveals how the SUVH-SDJ complex protects promoter methylated genes from transcriptional silencing and suggests that the transcriptional activation of promoter methylated genes mediated by the SUVH-SDJ complex may play a critical role in plant growth and development.

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • DNA Methylation / genetics
  • DNA Methylation / physiology
  • Gene Expression Regulation, Plant / genetics
  • Gene Expression Regulation, Plant / physiology
  • Promoter Regions, Genetic / genetics*
  • Transcriptional Activation / genetics
  • Transcriptional Activation / physiology*

Substances

  • Arabidopsis Proteins