Advancements in genetic testing now allow early identification of previously unresolved neuromuscular phenotypes. To illustrate this, we here present diagnoses of glycogen storage disease IV (GSD IV) in two patients with hypotonia and delayed development of gross motor skills. Patient 1 was diagnosed with congenital myopathy based on a muscle biopsy at the age of 6 years. The genetic cause of his disorder (two compound heterozygous missense mutations in GBE1 (c.[760A>G] p.[Thr254Ala] and c.[1063C>T] p.[Arg355Cys])), however, was only identified at the age of 17, after panel sequencing of 314 genes associated with neuromuscular disorders. Thanks to the availability of next-generation sequencing, patient 2 was diagnosed before the age of 2 with two compound heterozygous mutations in GBE1 (c.[691+2T>C] (splice donor variant) and the same c.[760A>G] p.[Thr254Ala] mutation as patient 1). GSD IV is an autosomal recessive metabolic disorder with a broad and expanding clinical spectrum, which hampers targeted diagnostics. The current cases illustrate the value of novel genetic testing for rare genetic disorders with neuromuscular phenotypes, especially in case of clinical heterogeneity. We argue that genetic testing by gene panels or whole exome sequencing should be considered early in the diagnostic procedure of unresolved neuromuscular disorders.
Keywords: Congenital myopathy; Gene panel; Genetic testing; Glycogen storage disease IV; Hypotonia.