In autism spectrum disorders (ASDs), the majority of neuroimaging studies have focused on the analysis of cortical morphology. White matter changes remain less understood, particularly their association to cortical structure and function. Here, we focused on region that has gained only little attention in ASD neuroimaging: the superficial white matter (SWM) immediately beneath the cortical interface, a compartment playing a prominent role in corticogenesis that incorporates long- and short-range fibers implicated in corticocortical connectivity. Studying a multicentric dataset of ASD and neurotypical controls, we harnessed surface-based techniques to aggregate microstructural SWM diffusion features. Multivariate analysis revealed SWM anomalies in ASD compared with controls in medial parietal and temporoparietal regions. Effects were similar in children and adolescents/adults and consistent across sites. Although SWM anomalies were more confined when correcting for cortical thickness and surface area, findings were overall robust. Diffusion anomalies modulated functional connectivity reductions in ASD and related to symptom severity. Furthermore, mediation models indicated a link between SWM changes, functional connectivity, and symptom load. Analyses targeting the SWM offer a novel perspective on the interplay between structural and functional network perturbations in ASD, highlighting a potentially important neurobiological substrate contributing to its diverse behavioral phenotype.
Keywords: autism; connectome; neuroimaging; structure–function; white matter.
© The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.