Transcriptional repressor GATA binding 1 (TRPS1), an atypical GATA transcription factor, functions as a transcriptional repressor and is also implicated in human cancers. However, the underlying mechanism of TRPS1 contributing to malignancy remains obscure. In the current study, we report that TRPS1 recognizes both gene proximal and distal transcription start site (TSS) sequences to repress gene expression. Co-IP mass spectrometry and biochemical studies showed that TRPS1 binds to CHD4/NuRD(MTA2). Genome-wide and molecular studies revealed that CHD4/NuRD(MTA2) is required for TRPS1 transcriptional repression. Mechanically, TRPS1 and CHD4/NuRD(MTA2) form precision-guided transcriptional repression machinery in which TRPS1 guides the machinery to specific target sites by recognizing GATA elements, and CHD4/NuRD(MTA2) represses the transcription of target genes. Furthermore, TP63 was identified and validated to be a direct target of TRPS1-CHD4/NuRD(MTA2) complex, which represses TP63 expression by involving decommission of TP63 enhancer in the described precision-guided manner, leading to a reduction of the ΔNp63 level and contributing to migration and invasion of cancer cells.