Circular RNA circMTO1 suppresses bladder cancer metastasis by sponging miR-221 and inhibiting epithelial-to-mesenchymal transition

Biochem Biophys Res Commun. 2019 Jan 22;508(4):991-996. doi: 10.1016/j.bbrc.2018.12.046. Epub 2018 Dec 11.

Abstract

Bladder cancer remains a leading cause of cancer-related death because of its distant metastasis and high recurrence rates. Deregulation of circular RNAs (circRNAs) can act either as tumor suppressors or oncogenes to control cell proliferation, migration, and metastasis. The role of circMTO1 in bladder cancer remain unknown. In this study, we investigated whether circMTO1 could use as a biomarker and therapeutic target for bladder cancer treatment. We first demonstrated that circMTO1 was an important circRNA frequently downregulated in bladder cancer tissue, and lower circMTO1 levels were positively correlated with bladder cancer patients' metastasis and poorer survival. Ectopic expression of circMTO1 in bladder cancer cells inhibited cell's epithelial-to-mesenchymal transition (EMT) and metastasis. In addition, we also revealed that circMTO1 was able to sponge miR-221 and overexpression of circMTO1 negatively regulated the E-cadherin/N-cadherin pathway to inhibit bladder cancer cells' EMT by competing for miR-221. In conclusion, our findings provide comprehensive evidences that circMTO1 is a prognostic biomarker in bladder cancer and suggest that circMTO1 may function as a novel therapeutic target in human bladder cancer.

Keywords: Biomarker; Bladder cancer; Circular RNA; Epithelial-to-mesenchymal transition; Metastasis.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Down-Regulation / genetics
  • Epithelial-Mesenchymal Transition / genetics*
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Male
  • Mice, Inbred BALB C
  • Mice, Nude
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • Middle Aged
  • Neoplasm Invasiveness
  • Neoplasm Metastasis
  • Prognosis
  • RNA / genetics*
  • RNA / metabolism
  • RNA, Circular
  • Up-Regulation / genetics
  • Urinary Bladder Neoplasms / genetics*
  • Urinary Bladder Neoplasms / pathology*

Substances

  • MIRN221 microRNA, human
  • MicroRNAs
  • RNA, Circular
  • RNA