Nodeless High-T_{c} Superconductivity in the Highly Overdoped CuO_{2} Monolayer

Phys Rev Lett. 2018 Nov 30;121(22):227002. doi: 10.1103/PhysRevLett.121.227002.

Abstract

We study the electronic structure and superconductivity in a CuO_{2} monolayer grown recently on the d-wave cuprate superconductor Bi_{2}Sr_{2}CaCu_{2}O_{8+δ}. Density functional theory calculations indicate a significant charge transfer across the interface such that the CuO_{2} monolayer is heavily overdoped into the hole-rich regime yet inaccessible in bulk cuprates. We show that both the Cu d_{x^{2}-y^{2}} and d_{3z^{2}-r^{2}} orbitals become important and the Fermi surface contains one electron and one hole pocket associated with the two orbitals, respectively. Constructing a minimal correlated two-orbital model for the e_{g} complex, we show that the spin-orbital exchange interactions produce a nodeless superconductor with extended s-wave pairing symmetry and a pairing energy gap comparable to the bulk d-wave gap, in agreement with recent experiments. The findings point to a direction of realizing new high-T_{c} superconductors in ozone grown transition-metal-oxide monolayer heterostructures.