Objective: Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas that harbor a high potential for metastasis and have a devastating prognosis. Combination chemoradiation aids in tumor control and decreases tumor recurrence but causes deleterious side effects and does not extend long-term survival. An effective treatment with limited toxicity and enhanced efficacy is critical for patients suffering from MPNSTs.
Methods: The authors recently identified that interleukin-13 receptor alpha 2 (IL-13Rα2) is overexpressed on MPNSTs and could serve as a precision-based target for delivery of chemotherapeutic agents. In the work reported here, a recombinant fusion molecule consisting of a mutant human IL-13 targeting moiety and a point mutant variant of Pseudomonas exotoxin A (IL-13.E13 K-PE4E) was utilized to treat MPNST in vitro in cell culture and in an in vivo murine model.
Results: IL-13.E13 K-PE4E had a potent cytotoxic effect on MPNST cells in vitro. Furthermore, intratumoral administration of IL-13.E13 K-PE4E to orthotopically implanted MPNSTs decreased tumor burden 6-fold and 11-fold in late-stage and early-stage MPNST models, respectively. IL-13.E13 K-PE4E treatment also increased survival by 23 days in the early-stage MPNST model.
Conclusions: The current MPNST treatment paradigm consists of 3 prongs: surgery, chemotherapy, and radiation, none of which, either singly or in combination, are curative or extend survival to a clinically meaningful degree. The results presented here provide the possibility of intratumoral therapy with a potent and highly tumor-specific cytotoxin as a fourth treatment prong with the potential to yield improved outcomes in patients with MPNSTs.
Keywords: MPNST; Pseudomonas toxin; interleukin-13 receptor alpha 2; intratumoral treatment; murine model; oncology.