In the context of applications with thin ionic liquid (IL) films on solid supports, we studied the ion distribution within mixed thin IL films by angle-resolved X-ray photoelectron spectroscopy. After the deposition of 1-methyl-3-octylimidazolium hexafluorophosphate, [C8C1Im][PF6], on top of a wetting layer (WL) of 3-methyl-1-(3,3,4,4,4-pentafluorobutyl)imidazolium hexafluorophosphate, [PFBMIm][PF6], on Ag(111) at room temperature (RT), we find a preferential enrichment of the [PFBMIm]+ cation at the IL/vacuum interface. In a similar deposition experiment at 82 K, this cation exchange at the IL/solid interface does not occur. Upon heating the film from 82 K to RT, we observe the replacement of [C8C1Im]+ by [PFBMIm]+ at the IL/vacuum interface between ∼160 and ∼220 K. No further changes in the surface composition were observed between 220 K and RT. Upon further heating the mixed IL film, we find the complete desorption of [PFBMIm][PF6] from the mixed film below 410 K, leaving a WL of pure [C8C1Im][PF6] on Ag(111), which desorbs until 455 K.