Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) in the low-molecular-weight (LMW) range is a long-standing challenge because of the fragments from the matrix and the heterogeneity of the matrix-analyte crystals. In this work, a homogeneous film with the monodispersed Ag nanoparticles (Ag NPs) in the confined interlayer of layered double hydroxides (LDHs) has been achieved. The Ag NPs with advantageous optical absorption could realize the energy capture and transfer process, and LDHs with abundant hydroxyl groups are beneficial for the deprotonated reaction. Therefore, the as-prepared film exhibited interference-free deprotonated signals in negative-ion mode with high ionization efficiency. The uniform matrix-analyte spots were constructed through the homogeneous assembly process, contributing to the high reproducibility for both the liquid and gaseous samples. Good linearities were successfully realized in the range from 0.1 μM to 1.0 mM for glucose with the relative standard deviation (RSD) of 3.8%, and 0.2-2.0 mM with the average RSD of 4.5% for psoralen samples, respectively. It is believed that the proposed matrix could exhibit competitive advantages for MALDI detection in the LMW region, which may provide new insight into development for MALDI mass detection.
Keywords: Ag nanoparticles (Ag NPs); hydroxyl groups; layered double hydroxides (LDHs); monodispersion; negative-ion mode.