We present a combined experimental and theoretical study of the evolution of the Fermi surface of the anomalous superconductor Pb_{1-x}Tl_{x}Te as a function of thallium concentration, drawing on a combination of magnetotransport measurements (Shubnikov-de Haas oscillations and the Hall coefficient), angle resolved photoemission spectroscopy, and density functional theory calculations of the electronic structure. Our results indicate that for Tl concentrations beyond a critical value, the Fermi energy coincides with resonant impurity states in Pb_{1-x}Tl_{x}Te, and we rule out the presence of an additional valence band maximum at the Fermi energy. A comparison to nonsuperconducting Pb_{1-x}Na_{x}Te implies that the presence of these impurity states at the Fermi energy provides the enhanced pairing interaction and thus also the anomalously high temperature superconductivity in this material.