Models of systems memory consolidation postulate a fast-learning hippocampal store and a slowly developing, stable neocortical store. Accordingly, early neocortical contributions to memory are deemed to reflect a hippocampus-driven online reinstatement of encoding activity. In contrast, we found that learning rapidly engenders an enduring memory engram in the human posterior parietal cortex. We assessed microstructural plasticity via diffusion-weighted magnetic resonance imaging as well as functional brain activity in an object-location learning task. We detected neocortical plasticity as early as 1 hour after learning and found that it was learning specific, enabled correct recall, and overlapped with memory-related functional activity. These microstructural changes persisted over 12 hours. Our results suggest that new traces can be rapidly encoded into the parietal cortex, challenging views of a slow-learning neocortex.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.