Mitochondrial permeability transition pore (mPTP) formation is well documented in isolated mitochondria. However, convincing detection of mPTP in whole cells remains elusive. In this study, we describe a high-throughput assay for Ca2+-activated mPTP opening in platelets using HyperCyt flow cytometry. In addition, we demonstrate that in several nucleated cells, using multiple approaches, the detection of cyclophilin D-dependent mPTP opening is highly challenging. Results with the mitochondrial-targeted Ca2+-sensing green fluorescent protein (mito-Case12) suggest the involvement of protein phosphatase 2B (PP2B; calcineurin) in regulating mitochondrial dynamics. Our results highlight the danger of relying on cyclosporine A alone as a pharmacological tool, and the need for comprehensive studies of mPTP in the cell.
Keywords: Case12; PP2B; calcineurin; calcium; cyclosporine A; mitochondria permeability transition pore; platelet.